基于脑电图(EEG)的脑生物识别技术已被越来越多地用于个人鉴定。传统的机器学习技术以及现代的深度学习方法已采用有希望的结果。在本文中,我们提出了EEG-BBNET,这是一个混合网络,该网络将卷积神经网络(CNN)与图形卷积神经网络(GCNN)集成在一起。 CNN在自动特征提取方面的好处以及GCNN通过图形表示在EEG电极之间学习连通性的能力被共同利用。我们检查了各种连通性度量,即欧几里得距离,皮尔逊的相关系数,相锁定值,相位滞后指数和RHO索引。在由各种脑部计算机界面(BCI)任务组成的基准数据集上评估了所提出的方法的性能,并将其与其他最先进的方法进行了比较。我们发现,使用会议内数据的平均正确识别率最高99.26%,我们的模型在事件相关电位(ERP)任务中的所有基线都优于所有基准。具有Pearson相关性和RHO指数的EEG-BBNET提供了最佳的分类结果。此外,我们的模型使用会议间和任务数据显示出更大的适应性。我们还研究了我们提出的模型的实用性,该模型的电极数量较少。额叶区域上的电极放置似乎最合适,性能损失最少。
translated by 谷歌翻译
尽管使用深度学习技术从2D ENA中提取血管结构的研究越来越多,但对于这种方法,众所周知,曲线式结构上的数据注释过程(如视网膜脉管系统)非常昂贵且耗时,耗时,耗时,尽管很少有人试图解决注释问题。在这项工作中,我们提出了涂鸦基本弱监督学习方法的应用来自动化像素级注释。所提出的方法称为八度,使用涂鸦的地面真理与对抗性和新颖的自我监督深度监督相结合。我们的新型机制旨在利用来自类似于Unet的结构的歧视层的判别输出,在训练过程中,骨料判别输出和分割图谓词之间的kullback-liebler差异在训练过程中被最小化。如我们的实验所示,这种组合方法导致血管结构的定位更好。我们在大型公共数据集上验证了我们提出的方法,即Rose,Octa-500。将分割性能与最新的完全监督和基于涂鸦的弱监督方法进行了比较。实验中使用的工作的实施位于[链接]。
translated by 谷歌翻译